20250112

Expectation maximization algorithm

這是給自己的一份學習紀錄,以免日子久了忘記這是甚麼理論XD Expectation-maximization algorithm -「最大期望值演算法」 經過兩個步驟交替進行計算: 第一步是計算期望值(E):利用對隱藏變量的現有估計值,計算其最大概似估計值 第二步是最大化(M):最大化在E步上求得的最大概似值來計算參數的值 M步上找到的參數估計值被用於下一個E步計算中,這個過程不斷交替進行 引自維基百科 Example from finalterm Assume that $Y_1, Y_2, …, Y_n ~ exp(\theta)$ Consider the MLE of $\theta$ based on $Y_1, Y_2, …, Y_n$ Suppose that 5 observed samples are collected from the experiment which measures the life time of the light bulb. Assume $y_1=1.5$, $y_2=0.58$, $y_3=3.4$ are complete experiment process. Because of the time limit, the fourth and fifth experiment are terminated at times $y^*_4=1.2$ and $y^*_5=2.3$ before the light bulb die. Based on ($y_1, y_2, y_3, y^*_4, y^*_5$), please use EM algorithm to estimate $\theta$. Solve With observed lifetimes: $y_1=1.5$, $y_2=0.58$, $y_3=3.4$ and $y^*_4=1.2$, $y^*_5=2.3$, meaning the actual lifetimes $Z_4>1.2$, $Z_5>2.3$ are unknown. So we treat $Z_4$ and $Z_5$ as latent variables, and have the complete likelihood like: ...

July 3, 2025 · 2 min