
Statistical Computing HW_0320
This is homework (1) 已知: $$X_1, X_2, …, X_n \overset{\text{iid}}{\sim}p(x)$$ 計算: $$ E( \hat{I}_M)=E\left[\frac{1}{n} \sum^n_{i=1} \frac{f(X_i)}{p(X_i)} \right]=\frac{1}{n}E\left[ \sum^n_{i=1} \frac{f(X_i)}{p(X_i)} \right] $$ 對於每個獨立的 $X_i$ ,我們只要計算: $$E\left[\frac{f(X_i)}{p(X_i)} \right]$$ 因此: $$ E\left[\frac{f(X)}{p(X)} \right] = \int^b_a\frac{f(x)}{p(x)}p(x)dx =\int^b_af(x)dx = I $$ 可知 $$E\left[\frac{f(X_i)}{p(X_i)} \right] =I, \forall i $$ 所以 $$ E(\hat{I}_M) =\frac{1}{n}\sum^n_{i=1}I=I $$ (2) 計算變異數 $$Var(\hat{I}_M)=E\left[(\hat{I}_M-I)^2\right]$$ 因為 $$ \begin{aligned} Var(\widehat{I}_M) &= Var\left(\frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{p(X_i)}\right) = \frac{1}{n}Var\left(\frac{f(X)}{p(X)}\right) \\ &= \frac{1}{n}\left(E\left[\left(\frac{f(X)}{p(X)}\right)^2\right]-I^2\right) \end{aligned} $$ 已知 $$E\left[\left(\frac{f(X)}{p(X)}\right)^2\right] < \infty$$ ...